Combined Geophysical Approach to Characterizing Subsurface Flow Paths in the Reynolds Creek Watershed (HS1D-0509)
Nigel Crook(1), Bryce Golden-Chen(1), Hiruy Abdu(2), David Robinson(1), Scott Jones(2), Inma Lebron(1) and Rosemary Knight(1).

(1) Geophysics Department, Stanford University, CA. (2) Department of Plants, Soils and Biometeorology, Utah State University, UT. *ncrook@pangea.stanford.edu.

Rationale
Many upland watersheds in the Western US are characterized by snow as the dominant source of precipitation. Understanding how snow melt moves through the subsurface and identifying the flow paths generated are of considerable interest in understanding hydrologic processes in these watersheds. We present preliminary data from the Reynolds Creek USDA Experimental Watershed in southern Idaho. The geophysical technique electromagnetic induction (EMI) was combined with DC electrical resistivity imaging (ERI) to study a 10m by 10m section of the upper watershed. EMI provides an excellent reconnaissance method allowing large areas to be surveyed rapidly. Subsequent geostatistical analysis of this data, with the relevant ground-truthing, allowed a spatial distribution of soil moisture variations to be produced. The combination of ERI imaging introduces an extra dimension to the survey, allowing the identification of subsurface controls on flow paths that are not obvious from inspection of surface topography. This information will aid hydrogeologists in determining the dominant subsurface flow directions and controls in this snow-dominated watershed.

Location
The USDA experimental watershed at Reynolds Creek, ID has been collecting hydrological measurements for 40 years. The upper section of the watershed is designated for experimental trials.

Methodology
Electrical resistivity data were collected using the IRS Sytical R1+ switch 46 resistivity imaging system. A series of orthogonal 2D profiles, see figure 3, were created by collecting data using the Wenner and dipole-dipole electrode configurations, with a minimum electrode and dipole separation of 0.5m. Consideration of the reciprocal error provided an estimate of data error in the field measurements; reciprocal errors were generally <2% for this survey and any errors above this were omitted from the inversion. The Profliser software, based on a regularized objective function combined with weighted least squares, was used in the inversion (http://www.es.lancs.ac.uk/people/amb/Profliser/profliser.html). EMI mapping was conducted using a Dualem 15, integrated with a GPS through an Allegro field computer.

Results

![Image]

Figure 1. View looking north down the Reynolds Creek watershed.

![Image]

Figure 2. Watered boundaries (left) with an expanded aerial photograph of the surveyed area with the EMI grid area (yellow box) and ERI grid area (red box; outline highlighted in gray).

![Image]

Figure 3. Example ERI profiles from lines 05 (top) and 01 (bottom), illustrating the variation in subsurface topography between the two layers.

![Image]

Figure 4. Contoured ERI data draped over the topography (top), the positions of the ERI profiles are shown overlaid on the topography contours for comparison (bottom); the data indicate the position of electrode for each profile.

![Image]

Figure 5. Representative depth slices (top) (bottom profile levels) taken through the 2D ERI profiles (shown bottom), draped over the topography.

Summary
The resistivity images depict a two layer structure, figure 3, an upper resistive layer overlaying a more conductive region; the subsurface composition is contrary similar, the resistive upper layer resulting from variations in soil moisture, clay percentage and the presence of the root zone. The boundary between these two layers displays significant subsurface topography throughout the profiles, with resistive channel structures incising into the more conductive lower region.

These subsurface structures, resulting from a decrease in clay percentage in these regions, are of particular interest because they have the potential to act as preferential pathways for soil water. The large channel structure evident along a SE-NW trend through the southern half of the ERI depth slices, figure 5, correlates well with a similar trend observed in the apparent conductivity contours in the corresponding region of the EMI data, figure 4.

Work is ongoing to develop a working methodology for the integration of these two datasets with the ERI providing a directed calibration for the EMI response to the subsurface conductivity structure. This can then be combined with the directed soil sampling to provide the calibration for the hydrological parameter mapping.

Acknowledgments
We would like to thank Dr. Mark Mayfield of USDA-ARS for allowing us access to the watershed and all his assistance and advice during the field work.

The purpose of the research, leading to the acquisition and interpretation of geophysical data was supported by funding to R Knight (Grants OPP 0233348, Department of Natural Resources, Idaho Department of Environmental Quality, and Fulbright Fellowship) and to NS Crook (Grants OPP 0313251, the Department of Energy, and a Graduate Research Fellowship of the American Physical Society). The authors wish to express gratitude to the U.S. Geological Survey (USGS) for providing access to the recharged ERI and EMI data. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the USGS.